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ABSTRACT 

A theory is developed to describe the magneto- 
hydrodynamic flow past a current-carrying flat plate. It is 
found that the magnetohydrodynamic contribution to the drag 
is proportional to the square of the current. A method for 
computing the flow field is presented. Such a flow field 
for liquid sodium is now being computed by the computing 
section at JPL. 

1. INTRODUCTION 

This study is in two parts. Sections Il to V contain a somewhat abbreviated discussion of a problem studied 

elsewhere by the author (Ref. 11, namely, the two-dimensional steady flow of a viscous incompressible fluid possess- 

ing low electrical  conductivity past  a current element. Sections VI to IX discuss  the application of such a flow past  

a finite, current-carrying flat plate disposed parallel to the free stream flow. 

1 
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I I .  STATEMENTOFTHECURRENTELEMENTPROBLEM 

Consider the two-dimensional steady flow of an incompressible fluid possessing kinematic viscosity 2/ and 

electrical conductivity 0. At the origin of coordinates (see Sketch 11, there is a current element carrying I amperes 

in a direction normal to the flow (toward the viewer in Sketch 1). The flow velocity q and the fluid dynamic pressure 

p are constant at infinity. 

Y 

Sketch 1 

The position vector is denoted by r = i z x  + i y = i,t + i,B, the magnetic induction vector by B = i , B ,  + 
Y 

i y B y ,  the velocity vector by q = i ,u  + i u, the gradient operator by v = iz(a/az) + i (a/ay), the Laplacian 

operator by V = a2/ax2 + a2/ay2, the constant magnetic penneability by po, and the constant density by p. 
Y Y 

2 

The flow i s  assumed to be described by the following differential equations and boundary conditions (the 

rationalized MKSQ system of units i s  used throughout): 

Q .  q = O (continuity) 

1 1 
(q . 0) + - Vp = - (V x B) x B + vQ2q (momentum) 

P PPO 

Q2 B + crpoV x (q x B) = 0 (induction) 

2 
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p(=) = p", 

lim 
r-. [! 

- d U r  

The path C, is a circle of radius t about the origin; therefore, Eq. (6) is the mathematical interpretation 

element . 

(6) 

of the current 

3 
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111. NON-DIMENSIONALIZING 

Three characteristic lengths appear in the problem, namely: 

1. A length based on the current, L ,  = ( I / o m  
2. A magnetic diffusion length, L 2  = l / (apo U )  

3. A length based on viscous diffusion, L 3  = v/U 

From these three lengths, i t  is seen that the problem h a s  exactly two characteristic dimensionless param- 

eters. In the following analysis it is assumed that one of these parameters, u = L 2 / L 3 ,  is 0(1), and the other, 

E = L , / L , ,  is small. The plan of attack is to non-dimensionalize the differential equations, using L 2  as character- 

i s t ic  length and U as characteristic velocity. The parameters u and E will appear in these non-dimensional equa- 

tions, and the problem will be to find an asymptotic expansion of the solution, valid as E + 0,  by'using a 

perturbation scheme. 

The following dimensionless quantities are introduced: 

9 

U 
q* = - 

P - P "  p* = ___ 

P u2 

Then the differential equations and boundary conditions become: 

v * . q * = o  (11) 

(12) 

4 
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V * 2 B *  + V* x (q* x B*) = 0 

q* (m) = i, p*(m) = 0 B*(m) = 0 

where 

a a 
a x* 

a =  v u p o  E = cl * v = .  + i  __ ' x  __ aY* P 
Y 

and CT is a circle of radius r* about the origin. 

5 
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I With the intent of finding an asymptotic expansion, assume a solution of the form 

IV. CONSTRUCTION OF THE ASYMPTOTIC EXPANSION 

B*(r*;  E )  = B(O)(r*)  + gl(c)B(')(r*) + ( 18) 

When we substitute these equations into (11) and (121, and equate coefficients of E ,  we obtain for the zeroth order 

The solution of (20) and (21) i s  easily obtained by the following physical argument: Equations (20) and (21) 

are  obtained formally from (11) and (12) by holding r* fixed and letting E + 0. That  i s ,  we are  implicitly stating that, 

a priori, Eq. (20) and (21) describe the flow when E + 0, at least in the region where 0 < / r *  I = 0 ( 1 ) ,  or, alternately, 

0 < I r l  = O ( l / a p o U )  = 0 ( L 2 ) .  Now I r l  = O ( l / a p o U )  will remain constant as E -+ 0 if we le t  E + 0 by letting 

the current tend to zero while keeping the other parameters in E = al m p  fixed. Then physical reasoning 

indicates that the limiting velocity i s  simply the uniform stream velocity. That i s ,  

Equation (21) i s  satisfied by (22) if i t  i s  assumed that p(')(r*)  = constant, and from the boundary condition at 

infinity (Eq. 15) this constant must be zero. Thus 

A similar argument provides a result which i s  used in Section VIII. T h i s  argument is as follows. In a region 

in which viscous effects are of secondary importance (for example, outside a viscous boundary layer) but at a distance 

(I], 0 < 111 = 0 [ ( Z / U )  6 1  = O(L1) from the current element, the  linearized velocity i s  s t i l l  valid. (Note that  

6 
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I L / L 2  = E ,  so we are saying that the linearization i s  valid much closer to the current element than i s  indicated by 

the discussion leading to (221, so long as viscous effects can be ignored.) To see this, note that  r , 0 < Ir I = O ( L 1 ) ,  

will remain constant as E + 0 if the current in  the current element is held fixed and E is made small by letting D + 0 
I .  

while the other parameters in E = V I  . /pg/p are kept constant. This means, of course, that w e  are decoupling the 

velocity and magnetic fields, and thus the linearization of velocity i s  valid in the magnetohydrodynamic case  when- 

ever i t  i s  valid in the ordinary fluid-dynamic case. 

To continue, let u s  substitute the assumed expansions (1'71, (18), (19) into Eq. (13) and (14) and equate co- 

efficients of E .  The  zeroth-order terms, using (221, give 

The solenoidal solution which sat isf ies  the integral relation (16) can be verified to be 

where K O  (r*/2), K l ( r * / 2 )  are  the modified Bessel functions of the second kind of the zeroth and first orders, with 

argument r * / 2 .  Sketch 2 shows the l ines  of magnetic induction. 

Y *  

Sketch 2 

7 
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The perturbation on the velocity and pressure fields are obtained next. If the assumed expansions (171, (181, 

and (19) are  substituted into Eq. (11) and (121, and the largest unknown terms are  retained, we obtain 

Hence 

flk) = I,(€) = €2 

I Written in full, using Eq. (26) for B'O), we have 

o* . q(1)  = 0 

- - K o ( f ) K , ( f )  ex* x* + - K o ( $ ) K o ( : ) ]  ex*  
8 n 2 r *  16rr2 

+ i  [- -- ex* y* K ~ (  f) ~ ~ ( 5 )  + ex* x * y* K ~ (  +) ~1(:)] (31) 

16rr2r* 16 v 2 r *  

If the right s ide  of (31) were zero, (30) and (31) would be Oseen's equations. We can obtain a formal particular 

solution of Eq. (30) and (31) in the form of an integral by using the fundamental solution tensor of the Oseen 

equations (Ref. 2). For example, the expression for ~ ~ u ( l ) ( r * )  (the subscript p indicates that this  i s  a particular 
P 

solution) i s ,  formally, 

8 
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+ e t *  E* 
- - K 0 ( ? ) K o ( $ ) ]  e e* 

a d p *  16n2 

1 
e 

Ir* - p *  12 2a b* - p  * I 

x [ - 
16rr2p* 

where 

and where the variable of integration i s  p* = ixc* + i q* = ipp* + i+ 4 in Cartesian and polar coordinates, 

respectively. The above integral does not exis t  in the usual sense,  but, by taking the “finite part” (Ref. 3, page 

381, we obtain a solution of the differential equations. Using the standard methods for expressing the finite part, we 

have 

Y 

9 
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p*cos  4 

16 r r2  
KO 

2 n  
0 0  

x p* d4 dp* 

x *  - p*cos  4 

2 a  + j /' [- y* - p * s i n  4 
e 

2 n  Ir* -p * 12 2 a  
0 

where F(r*; p*, 4) i s  given by (33) 

and C2v(')(r*) .  
P 

2 (qr*) 
P The above discussion, with obvious modifications, applies a l so  to 6 p 

A somewhat more physically intuitive way of arriving at (34) i s  as follows. We note that the integral (32) h a s  

a logarithmic infinity a t  the origin. If we temporarily assume that the forcing terms are zero for Ir* I 5 R > 0, then 

the lower limit of integration with respect to p* i s  R, and the integral will converge. Suppose we now add to this  

resulting integral the following term, proportional to  the well-known fundamental solution of Oseen's equations 

(Ref. 2): 

10 
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I! 

%* %* 

where F(r*; p*, 4) is given by Eq. (33). The sum also satisfies the differential equations with the modified non- 

homogeneous terms. Now, let R + 0. The result i s  identical to (34). 

To the particular solution (34) can be added a term proportional to the fundamental solution of the Oseen 

equations. For the current element case, i t  is difficult to determine exactly what constant of proportionality to use, 

and i t  i s  not discussed further in this paper. 

11 
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1 
I V. DRAG DUE TO B(O), qi l ) ,  pbl) I I 

I 
Without entering into a detailed discussion, we can make a few comments about the consequences of the 

expressions for the solution obtained in Section IV. F i r s t  of all, i t  is easily verified that when B ( 0 )  , q, (1) , p, (1) are 

written for small values of r*, there appear viscous s t ress  terms, pressure terms, and Maxwell s t ress  terms, each 

with a singular behavior of the form 

log r* 

r *  

Fortunately, these terms all exactly cancel, leaving no infinite net forces. In addition, there are terms with a 

singular behavior of the form 

1 

r*  
- 

which do not cancel, and thus there is a finite drag on the cum 

concern ourselves. 

nt element. It i 

(37) 

(38) 

this  drag with which we shal l  now 

A s  is well known, we can find the drag by considering the flux of momentum arising from the velocity, 

pressure, and magnetic induction fields a t  infinity. The magnetic s t ress  terms from B'O) clearIy behave, for large 

r, like 

-r* t%* 
e 

(39) 
l* 

which i s  a sufficiently rapid decay to give zero contribution to momentum flux, so we need contend with only 

(')(r*) and p(')(r*). The actual computation can be reduced to a single integration which must be carried out 

numerically. An intuitive argument leading to this integral is as follows (for a proof, s e e  Ref. 1, appendix). We 

know from the symmetry of the problem that the force on the current element is in the z-direction; Le., there is no 

lift. A s  we move away from the origin, the forcing t e n s ,  if they decay sufficiently fast a t  infinity, gradually appear 

as though concentrated a t  the origin and directed along the 2- axis,  80 that for large r*, qp)  and P(') behave like 

the response to a concentrated force a t  the origin, i.e., proportional to the fundamental solution; and the constant of 

proportionality is given by the integral of the x -  direction forcing terns in the integrand. Th i s  constant corresponds 

qP P 

P 

12 
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to the product of upo and the "source strength," expressed i n  physical variables, of the so-called longitudinal 

(i.e., irrotational) component, and i t  is well-known that the drag in physical variables is the product of p U and this 

source strength. If the integral is negative, the contribution to drag is positive. 

The integral of the x -  direction forcing te rns  can be conveniently obtained from Eq. (34). We need only 

those terms even in y, giving the result 

The result  of the numerical integration i s  

1.90 

1 6 r 2  
J 2 - E 2  ___ 

A s  stated above, the drag i s  the product of I ,  1!0p~, and pU. Thus 

1.9 u 12pi  u newtons/meter 
Drag 2 - 

16n2 P -  

(41) 

(42) 

The subscript p indicates that this i s  the drag contribution from the particular solutions q"), p ( l )  and B(O) P P  

Section VI deals  with an application of the preceding results. 

13 



JPL Technical Report No. 32-57 

VI. FLOW PAST A CURRENT-CARRYING FLAT PLATE 

In the preceding sections we have considered the flow past  a current element. Results obtained there are 

now applied to the study of the flow past  a finite flat plate. Some remarks as to the validity of the technique will be 

made in Section VIII. 

Consider a flat  plate with leading edge at  ( - b ,  0) and trailing edge a t  ( b ,  O), a s  shown in Sketch 3 

Y 

Sketch 3 

The plate carries a current, lo amperes, and as a specific example we assume that the current density in the plate 

i s  uniform, l 

10 
Z(x) = __ amperes/meter - b < ~ l b  

2 b  
(43) 

Now assume that Eq. (34) has been evaluated for values of r* on the x*  axis.  If the current element i s  on the 

X *  axis  a t  e*, and the current element carries current dl ,  then the non-dimensional perturbation velocity a t  x *  will 

be 

and the effect induced by the entire flat plate will thus be simply 

~ 

14 
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h* 

where 

2b* 

To this  solution we can add a homogeneous solution, and the choice is based on the requirement that the no- 

s l ip  condition on the plate be satisfied. The x -  direction non-dimensional velocity perturbation a t  x* due to a 

singular force of strength p U/apo (i.e., a unit dimensionless "force") placed on the z-axis a t  the point e* and 

acting in the upstream direction i s  denoted by uo [i,(z* - e*)] ; uo [i,(x* - e*)] is then simply the fundamental 

solution of Eq. (30) and (31), the right-hand s ide of (31) being replaced by a Dirac delta function. If we have a 

distribution of such forces f (e*) along the plate, they induce a t  the point x* a velocity (see Ref. 4, p. 107) 

b* 
ro 

To satisfy the no-slip condition, we thus require 

the first term being the dimensionless free-stream velocity. Using Eq. (471, Eq. (48) becomes 

which is a Fredholm integral equation of the first kind with the unknown function f (e*). It is convenient to write 

15 
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where 

and 

Equation (51) has been discussed by Bairstow, Cave, and Lang (Ref. 5) and others. The contribution to 

drag from u H ( z * )  is simply 

where Dragu is the fluid dynamic drag when no currents flow. The total drag i s  the sum of the contributions from 

(42) and (531, 

Dragtotal = Dragv + DragA + Drug P (54) 

It can be shown that as the length of the plate becomes very small, the uA behaves l ike (log b)'/(a327~'). 

This means that the velocity pas t  the plate tends to be greater than the free-stream velocity; consequently the skin 

friction i s  greater than that for the non-magnetohydrodynamic case. However, as the length of the plate increases,  

this effect tends to  be reversed, because the velocity induced by those current elements some distance away from a 

given point on the plate i s  in a direction opposing the free stream. A more complete discussion must be based on 

evaluation of Eq. (461, which in turn depends on the evaluation of u 
P '  

16 
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VII. EXPERIMENTAL POSSIBILITIES 

Some indications as to the possibiiity oi experimentally vaiifj-iiig the thecy cf this nzn-1. r r-- i ? z  - the lehnratory 

can be given by considering an experiment in which liquid sodium flows a t  1 meter per s e c  pas t  a thin plate 1 cm 

wide (in the direction of the flow), carrying a current of 2000 amperes. The  quantity e2, which we are assuming to be 

small, is in th i s  case  c) 1/2. (A sodium magnetohydrodynamic experimental facility is in the early s tages  of develop- 

ment at the Laboratory.) For sodium, typical physical parameters are 

viscosity 

density 

conductivity 0 = 8.55 x 10 mho!meter 

permeability of free space, po = 4 n  x henry/meter 

p = 5.3 x 1 0 ' ~  poise 

p = 9.2 x IO2 kgm/meter3 

6 

From Eq. (42), we have a contribution to drag of 

Drag 2 - la9 o12 U 2 0.65 newtons/meter 
16n2 

(55) 

The fluid dynamic drag on the flat plate (i.e., when there is no magnetohydrodynamic effect) is the product of p U 2 ,  

the length of the plate, and the drag coefficient, C,, which is near unity for this  case  (Reynolds number i s  several 

thousand); therefore 

(56) - 
= 9 newtondmeter 

Of course, this  does not take into account the other contribution to the magnetohydrodynamic drag, namely 

DragA, from Eq. (53) .  As mentioned above, this contribution must await computation of u P' However, comparison of 

Dragfluid dynamic and Drag does indicate a definite possibility of measuring the magnetohydrodynamic effect. In 

any case,  note that s ince the induced dimensionless velocity a t  the plate uA is proportional to c2, Eq. (52) shows 

fA (e*) is a l so  proportional to e2, so that, in physical variables, DragA is proportional to 

P 

- € 2  = o 1 2 p ; u  PU 

PO 

17 
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18 

L 

Since Drag is proportional to this same coefficient, we s e e  immediately that the total magnetohydrodynamic contri- 

bution to drag varies a s  the square of the current. It seems that th i s  behavior might be verified experimentally, even 

when we do not know the numerical value of DragA and hence of DragA + Drag 

P 

P' 

Experimentally the situation i s  pleasant because the fluid dynamic drag i s  proportional to the length of the 

plate, and, roughly speaking, the total current that can be used in the plate is proportional to the length of plate. 

But the magnetohydrodynamic drag contribution, being proportional to the square of the current, varies as the square 

of the length of the plate. This  fact may be used to advantage in an experimental arrangement. (The reader should 

be cautioned that this behavior applies to Drag only.) P 



IPL Technical Report No. 32-57 

VIII. VALIDITY OF THE APPROXIMATION 

The validity of the analysis may be discussed by considering the regions in which the linearization is va!iL. 

For the ordinary fluid dynamic case,  many workers, including Bairstow, Cave, and Lang (Ref. 51, Piercy and Winny 

(Ref. 6), and Lewis and Carrier (Ref. 7), have shown that, quantitatively, the use of Oseen’s equations to find the 

drag due to flow past  a flat plate is not very accurate (although qualitatively the equations provide a nice picture of 

the flow). The explanation for the failure can be traced to the fact  that the skin friction coefficient must be found in 

that very region where the linearization breaks down. In the  magnetohydrodynamic case,  this argument indicates that 

we_ should not expect that the contribution to drag given by (50) will be any more accurate than the solution based on 

Oseen’s equations in the ordinary fluid dynamic case. On the other hand, under a suitable condition the contribution 

from (42) should be accurate. The required “suitable condition” is that the boundary layer thickness be small com- 

pared to L , ,  the current length. Roughly speaking, this is because the approximation used for the body forces in the 

momentum equation (28) is valid up to the point where the linearization breaks down. From the remarks made in 

Section IV we know that the magnetic field does not spoil the linearization outside the boundary layer. Hence it 

s e e m s  probable that the linearization is valid everywhere outside the boundary layer, even in the magnetohydro- 

dynamic case.  Thus the expression for the body forces is valid up to the edge of the boundary layer, and if this  layer 

is thin the assumption that these forces extend right up to the plate ( a s  was assumed in the analysis) will be very 

nearly valid ( see  Sketch 4). 

EDGE 
LAY 

OF 
ER 

BOUNDARY 
7 

Sketch 4 
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For the liquid sodium experiment mentioned above, the boundary layer thickness attains a maximum at the 

trailing edge of 

2 0.024 cm 

whereas L ,  in this case is  

2 7.6 cm 

Hence L >> 8, so an experiment using liquid sodium should provide a valid test for the theory. 
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